enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_function

    In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.

  3. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    The usual operations of sets may be extended to multisets by using the multiplicity function, in a similar way to using the indicator function for subsets. In the following, A and B are multisets in a given universe U , with multiplicity functions m A {\displaystyle m_{A}} and m B . {\displaystyle m_{B}.}

  4. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, double roots counted twice). Hence the expression, "counted with multiplicity".

  5. Operation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Operation_(mathematics)

    In mathematics, an operation is a function from a set to itself. For example, an operation on real numbers will take in real numbers and return a real number. An operation can take zero or more input values (also called " operands " or "arguments") to a well-defined output value.

  6. Multiplicative number theory - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_number_theory

    Multiplicative number theory is a subfield of analytic number theory that deals with prime numbers and with factorization and divisors.The focus is usually on developing approximate formulas for counting these objects in various contexts.

  7. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    Since the only invertible element is 1, division is the identity function. Elements of GF(p n) may be represented as polynomials of degree strictly less than n over GF(p). Operations are then performed modulo m(x) where m(x) is an irreducible polynomial of degree n over GF(p), for instance using polynomial long division.

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...

  9. Serre's multiplicity conjectures - Wikipedia

    en.wikipedia.org/wiki/Serre's_multiplicity...

    In mathematics, Serre's multiplicity conjectures, named after Jean-Pierre Serre, are certain problems in commutative algebra, motivated by the needs of algebraic geometry. Since André Weil 's initial definition of intersection numbers , around 1949, there had been a question of how to provide a more flexible and computable theory, which Serre ...