Search results
Results from the WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and ...
The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...
The designation for a specific motor looks like C6-3.In this example, the letter (C) represents the total impulse range of the motor, the number (6) before the dash represents the average thrust in newtons, and the number (3) after the dash represents the delay in seconds from propelling charge burnout to the firing of the ejection charge (a gas generator composition, usually black powder ...
In astrodynamics, the characteristic energy is a measure of the excess specific energy over that required to just barely escape from a massive body. The units are length 2 time −2, i.e. velocity squared, or energy per mass.
In summary, however, most formulations have a burn rate between 1–3 mm/s at STP and 6–12 mm/s at 68 atm. The burn characteristics (such as linear burn rate) are often determined prior to rocket motor firing using a strand burner test. This test allows the APCP manufacturer to characterize the burn rate as a function of pressure.
In aerospace engineering, concerning aircraft, rocket and spacecraft design, overall propulsion system efficiency is the efficiency with which the energy contained in a vehicle's fuel is converted into kinetic energy of the vehicle, to accelerate it, or to replace losses due to aerodynamic drag or gravity.
Hybrid rocket fuel regression refers to the process by which the fuel grain of a hybrid-propellant rocket is converted from a solid to a gas that is combusted. It encompasses the regression rate, the distance that the fuel surface recedes over a given time, as well as the burn area, the surface area that is being eroded at a given moment.