enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic number (group theory) - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number_(group_theory)

    A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …

  3. Cyclic number - Wikipedia

    en.wikipedia.org/wiki/Cyclic_number

    Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of 1/(L + 1). Conversely, if the digital period of 1/p (where p is prime) is p − 1, then the digits represent a cyclic number. For example: 1/7 = 0.142857 142857...

  4. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:

  5. Cyclic (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Cyclic_(mathematics)

    Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle

  6. Cycle index - Wikipedia

    en.wikipedia.org/wiki/Cycle_index

    A cyclic group, C n is the group of rotations of a regular n-gon, that is, n elements equally spaced around a circle. This group has φ(d ) elements of order d for each divisor d of n, where φ(d ) is the Euler φ-function, giving the number of natural numbers less than d which are relatively prime to d.

  7. Character table - Wikipedia

    en.wikipedia.org/wiki/Character_table

    The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).

  8. Cyclically ordered group - Wikipedia

    en.wikipedia.org/wiki/Cyclically_ordered_group

    In mathematics, a cyclically ordered group is a set with both a group structure and a cyclic order, such that left and right multiplication both preserve the cyclic order. Cyclically ordered groups were first studied in depth by Ladislav Rieger in 1947. [ 1 ]

  9. Order (group theory) - Wikipedia

    en.wikipedia.org/wiki/Order_(group_theory)

    In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is infinite. The order of an element of a group (also called period length or period) is the order of the subgroup generated by the element.