enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Permutation matrix - Wikipedia

    en.wikipedia.org/wiki/Permutation_matrix

    Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.

  3. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    In this expression, each term has one factor from each row, all in different columns, arranged in increasing row order. For example, bdi has b from the first row second column, d from the second row first column, and i from the third row third column. The signs are determined by how many transpositions of factors are necessary to arrange the ...

  4. Row equivalence - Wikipedia

    en.wikipedia.org/wiki/Row_equivalence

    There is a similar notion of column equivalence, defined by elementary column operations; two matrices are column equivalent if and only if their transpose matrices are row equivalent. Two rectangular matrices that can be converted into one another allowing both elementary row and column operations are called simply equivalent .

  5. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A matrix is said to be in reduced row echelon form if furthermore all of the leading coefficients are equal to 1 (which can be achieved by using the elementary row operation of type 2), and in every column containing a leading coefficient, all of the other entries in that column are zero (which can be achieved by using elementary row operations ...

  6. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    rank(A) = the maximum number of linearly independent rows or columns of A. [5] If the matrix represents a linear transformation, the column space of the matrix equals the image of this linear transformation. The column space of a matrix A is the set of all linear combinations of the columns in A. If A = [a 1 ⋯ a n], then colsp(A) = span({a 1 ...

  7. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix with entries 0, 1 and −1 such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign. Anti-diagonal matrix: A square matrix with all entries off the anti-diagonal equal to zero. Anti-Hermitian matrix: Synonym for skew-Hermitian matrix. Anti-symmetric matrix

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.

  9. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    For finite-dimensional real vectors in with the usual Euclidean dot product, the Gram matrix is =, where is a matrix whose columns are the vectors and is its transpose whose rows are the vectors . For complex vectors in C n {\displaystyle \mathbb {C} ^{n}} , G = V † V {\displaystyle G=V^{\dagger }V} , where V † {\displaystyle V^{\dagger ...