Search results
Results from the WOW.Com Content Network
Face detection is gaining the interest of marketers. A webcam can be integrated into a television and detect any face that walks by. The system then calculates the race, gender, and age range of the face. Once the information is collected, a series of advertisements can be played that is specific toward the detected race/gender/age.
In the second paper Tomasi and Kanade [2] used the same basic method for finding the registration due to the translation but improved the technique by tracking features that are suitable for the tracking algorithm. The proposed features would be selected if both the eigenvalues of the gradient matrix were larger than some threshold.
OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly for real-time computer vision. [2] Originally developed by Intel, it was later supported by Willow Garage, then Itseez (which was later acquired by Intel [3]).
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.
To search for the object in the entire frame, the search window can be moved across the image and check every location with the classifier. This process is most commonly used in image processing for object detection and tracking, primarily facial detection and recognition. The first cascading classifier was the face detector of Viola and Jones ...
Face Recognition is used to identify or verify a person from a digital image or a video source using a pre-stored facial data. Visage SDK's face recognition algorithms can measure similarities between people and recognize a person’s identity [citation needed] from a frontal facial image by comparing it to pre-stored faces.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
This algorithm uses the idea that weak edge pixels from true edges will (usually) be connected to a strong edge pixel while noise responses are unconnected. To track the edge connection, blob analysis is applied by looking at a weak edge pixel and its 8-connected neighborhood pixels. As long as there is one strong edge pixel that is involved in ...