Search results
Results from the WOW.Com Content Network
For example, a normal 8 × 8 square will always equate to 260 for each row, column, or diagonal. The normal magic constant of order n is n 3 + n / 2 . The largest magic constant of normal magic square which is also a: triangular number is 15 (solve the Diophantine equation x 2 = y 3 + 16y + 16, where y is divisible by 4);
This sum can also be found in the four outer numbers clockwise from the corners (3+8+14+9) and likewise the four counter-clockwise (the locations of four queens in the two solutions of the 4 queens puzzle [50]), the two sets of four symmetrical numbers (2+8+9+15 and 3+5+12+14), the sum of the middle two entries of the two outer columns and rows ...
The most surprising of these is that the sum of the numbers in the triangles that point upwards is the same as the sum of those in triangles that point downwards (no matter how large the T-hexagon). In the above example, 17 + 20 + 22 + 21 + 2 + 6 + 10 + 14 + 3 + 16 + 12 + 7 = 5 + 11 + 19 + 9 + 8 + 13 + 4 + 1 + 24 + 15 + 23 + 18 = 150
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
One can then prove that this smoothed sum is asymptotic to − + 1 / 12 + CN 2, where C is a constant that depends on f. The constant term of the asymptotic expansion does not depend on f : it is necessarily the same value given by analytic continuation, − + 1 / 12 .
An antimagic square of order n is an arrangement of the numbers 1 to n 2 in a square, ... 32 1: 13: 3: 12: ... 12 9 22 10 In the antimagic ...
First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely.
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.