Search results
Results from the WOW.Com Content Network
Although the mechanisms through which eddies shape ecosystems are not yet fully understood, eddies transport nutrients through a combination of horizontal and vertical processes. Stirring and trapping relate to nutrient transport, whereas eddy pumping, eddy-induced Ekman pumping , and eddy impacts on mixed-layer depth variate nutrient. [ 3 ]
The icy Benguela and the warm, south-flowing Agulhas current do not meet off the Cape of Good Hope (see diagram on the right, above), but there is a body of water off the South African south coast, east and particularly west of Cape Agulhas that consists of eddies from both currents, so that offshore water temperatures along the south coast of ...
The world's largest ocean gyres. Western boundary currents may themselves be divided into sub-tropical or low-latitude western boundary currents. Sub-tropical western boundary currents are warm, deep, narrow, and fast-flowing currents that form on the west side of ocean basins due to western intensification. They carry warm water from the ...
Eddies that form in that current are distinctive as well. “If they pair up they’ll shoot across the whole of the Tasman Sea and also carry the same kinds of properties with them,” Hughes says.
A northern-hemisphere gyre in geostrophic balance. Paler water is less dense than dark water, but more dense than air; the outwards pressure gradient is balanced by the 90 degrees-right-of-flow coriolis force. The structure will eventually dissipate due to friction and mixing of water properties.
These types of mesoscale eddies have been observed in many major ocean currents, including the Gulf Stream, the Agulhas Current, the Kuroshio Current, and the Antarctic Circumpolar Current, amongst others. Mesoscale ocean eddies are characterized by currents that flow in a roughly circular motion around the center of the eddy.
Their work showed that all eddies were less than 50 kilometres (31 mi) in diameter and 70% of all eddies measured less than 10 kilometres (6.2 mi). [3] The eddies appeared to be caused mostly by topography (particularly islands), wind, and instabilities in the current. These eddies lay mainly between the California Current (flowing toward the ...
The Great Whirl is a huge anti-cyclonic eddy generated by the Somali current flowing in (northern) summer, and one of the two gigantic Indian Ocean Gyres (the other is the Socotra Gyre). The Great Whirl can be observed between 5-10°N and 52-57°E off the Somali coast in the summer season, a location typically around 200 km southwest of the ...