Search results
Results from the WOW.Com Content Network
The Hough transform as it is universally used today was invented by Richard Duda and Peter Hart in 1972, who called it a "generalized Hough transform" [3] after the related 1962 patent of Paul Hough. [ 4 ] [ 5 ] The transform was popularized in the computer vision community by Dana H. Ballard through a 1981 journal article titled " Generalizing ...
The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...
The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to ...
Hough transforms are techniques for object detection, a critical step in many implementations of computer vision, or data mining from images. Specifically, the Randomized Hough transform is a probabilistic variant to the classical Hough transform, and is commonly used to detect curves (straight line, circle, ellipse, etc.) [1] The basic idea of Hough transform (HT) is to implement a voting ...
Therefore, one expects that line detection algorithms should successfully detect these lines in practice. Indeed, the following figure demonstrates Hough transform-based line detection applied to a perspective-transformed chessboard image. Clearly, the Hough transform is able to accurately detect the lines induced by the board squares.
Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated.
The leftmost image shows the first point being transformed. First, lines of different angles are plotted, all going through the first point. For each of the lines, the perpendicular which also bisects the origin is found. The length and angle of the support vector are then found. The values are shown in the table below the diagram.
If Hough transforms are used to detect lines and ellipses, then thinning could give much better results. If the edge happens to be the boundary of a region, then thinning could easily give the image parameters like perimeter without much algebra. There are many popular algorithms used to do this, one such is described below: