enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radioactivity in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Radioactivity_in_the_life...

    Not all molecules in the solution have a P-32 on the last (i.e., gamma) phosphate: the "specific activity" gives the radioactivity concentration and depends on the radionuclei's half-life. If every molecule were labelled, the maximum theoretical specific activity is obtained that for P-32 is 9131 Ci/mmol.

  3. Radioactive tracer - Wikipedia

    en.wikipedia.org/wiki/Radioactive_tracer

    A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide (a radioactive atom). By virtue of its radioactive decay , it can be used to explore the mechanism of chemical reactions by tracing the path that the radioisotope follows from ...

  4. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.

  5. Technetium-99m - Wikipedia

    en.wikipedia.org/wiki/Technetium-99m

    This is still a short half-life relative to many other known modes of radioactive decay and it is in the middle of the range of half lives for radiopharmaceuticals used for medical imaging. After gamma emission or internal conversion, the resulting ground-state technetium-99 then decays with a half-life of 211,000 years to stable ruthenium-99 ...

  6. Environmental isotopes - Wikipedia

    en.wikipedia.org/wiki/Environmental_isotopes

    Thus, the only sources of lead in a zircon crystal are through decay of uranium and thorium. Both the uranium-235 and uranium-238 series decay into an isotope of lead. The half-life of converting 235 U to 207 Pb is 710 million years, and the half-life of converting 238 U to 206 Pb is 4.47 billion years. Because of high resolution mass ...

  7. Nuclear chemistry - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chemistry

    Ernest Rutherford, working in Canada and England, showed that radioactive decay can be described by a simple equation (a linear first degree derivative equation, now called first order kinetics), implying that a given radioactive substance has a characteristic "half-life" (the time taken for the amount of radioactivity present in a source to ...

  8. Fluorine-18 - Wikipedia

    en.wikipedia.org/wiki/Fluorine-18

    Fluorine-18 (18 F, also called radiofluorine) is a fluorine radioisotope which is an important source of positrons. It has a mass of 18.0009380(6) u and its half-life is 109.771(20) minutes. It decays by positron emission 96.7% of the time and electron capture 3.3% of the time. Both modes of decay yield stable oxygen-18.

  9. Radionuclide - Wikipedia

    en.wikipedia.org/wiki/Radionuclide

    Radioactive nonprimordial, but naturally occurring on Earth. 61 347 Carbon-14 (and other isotopes generated by cosmic rays) and daughters of radioactive primordial elements, such as radium, polonium, etc. 41 of these have a half life of greater than one hour. Radioactive synthetic half-life ≥ 1.0 hour). Includes most useful radiotracers. 662 989