Search results
Results from the WOW.Com Content Network
[c] [2] For example, a hypothetical weak acid having K a = 10 −5, the value of log K a is the exponent (−5), giving pK a = 5. For acetic acid, K a = 1.8 x 10 −5, so pK a is 4.7. A higher K a corresponds to a stronger acid (an acid that is more dissociated at equilibrium).
Buffer capacity falls to 33% of the maximum value at pH = pK a ± 1, to 10% at pH = pK a ± 1.5 and to 1% at pH = pK a ± 2. For this reason the most useful range is approximately pK a ± 1. When choosing a buffer for use at a specific pH, it should have a pK a value as close as possible to that pH. [2]
Such a statement is incorrect. For example, acetic acid is a weak acid which has a = 1.75 x 10 −5. Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base
For example, if a macromolecule M has three binding sites, K′ 1 describes a ligand being bound to any of the three binding sites. In this example, K′ 2 describes two molecules being bound and K′ 3 three molecules being bound to the macromolecule. The microscopic or individual dissociation constant describes the equilibrium of ligands ...
For example, the acid may be acetic acid and the salt may be sodium acetate. The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant , K a of the acid, and the concentrations of the species in solution.
The pK a 1 ⁄ 2 is equal to the Henderson–Hasselbalch pK a (pK HH a ) if the titration curve follows the Henderson–Hasselbalch equation . [ 14 ] Most p K a calculation methods silently assume that all titration curves are Henderson–Hasselbalch shaped, and p K a values in p K a calculation programs are therefore often determined in this way.
Pyrazole is a weak base, with pK b 11.5 (pK a of the conjugate acid 2.49 at 25 °C). [3] According to X-ray crystallography , the compound is planar. The two C-N distances are similar, both near 1.33 Å [ 4 ]
The measurement of pH can become difficult at extremely acidic or alkaline conditions, such as below pH 2.5 (ca. 0.003 mol/dm 3 acid) or above pH 10.5 (above ca. 0.0003 mol/dm 3 alkaline). This is due to the breakdown of the Nernst equation in such conditions when using a glass electrode.