Search results
Results from the WOW.Com Content Network
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
In most cases solubility decreases with decreasing temperature; in such cases the excess of solute will rapidly separate from the solution as crystals or an amorphous powder. [2] [3] [4] In a few cases the opposite effect occurs. The example of sodium sulfate in water is well-known and this was why it was used in early studies of solubility.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
Barium iodate, Ba(IO 3) 2, has a solubility product K sp = [Ba 2+][IO 3 −] 2 = 1.57 x 10 −9. Its solubility in pure water is 7.32 x 10 −4 M. However in a solution that is 0.0200 M in barium nitrate, Ba(NO 3) 2, the increase in the common ion barium leads to a decrease in iodate ion concentration. The solubility is therefore reduced to 1. ...
By contrast, later salts in the series increase the solubility of nonpolar molecules ("salting in") and decrease the order in water; in effect, they weaken the hydrophobic effect. [14] [15] The "salting out" effect is commonly exploited in protein purification through the use of ammonium sulfate precipitation. [16]
A sodium ion solvated by water molecules. Solvations describes the interaction of a solvent with dissolved molecules. Both ionized and uncharged molecules interact strongly with a solvent, and the strength and nature of this interaction influence many properties of the solute, including solubility, reactivity, and color, as well as influencing the properties of the solvent such as its ...
A solubility equilibrium exists when a chemical compound in the solid state is in chemical equilibrium with a solution containing the compound. This type of equilibrium is an example of dynamic equilibrium in that some individual molecules migrate between the solid and solution phases such that the rates of dissolution and precipitation are equal to one another.