enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Representation theory of the Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    The classification of the irreducible infinite-dimensional representations of the Lorentz group was established by Paul Dirac's doctoral student in theoretical physics, Harish-Chandra, later turned mathematician, [nb 3] in 1947.

  3. Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Lorentz_group

    In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry:

  4. Representation of a Lie group - Wikipedia

    en.wikipedia.org/wiki/Representation_of_a_Lie_group

    The rotation group SO(3) is a compact Lie group and thus every finite-dimensional representation of SO(3) decomposes as a direct sum of irreducible representations. The group SO(3) has one irreducible representation in each odd dimension. [ 4 ]

  5. Poincaré group - Wikipedia

    en.wikipedia.org/wiki/Poincaré_group

    Another way of putting this is that the Poincaré group is a group extension of the Lorentz group by a vector representation of it; it is sometimes dubbed, informally, as the inhomogeneous Lorentz group. In turn, it can also be obtained as a group contraction of the de Sitter group SO(4, 1) ~ Sp(2, 2), as the de Sitter radius goes to infinity.

  6. Gamma matrices - Wikipedia

    en.wikipedia.org/wiki/Gamma_matrices

    This is a spin representation. When these matrices, and linear combinations of them, are exponentiated, they are bispinor representations of the Lorentz group, e.g., the S(Λ) of above are of this form. The 6 dimensional space the σ μν span is the representation space

  7. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    For a general n-component object one may write ′ = (), where Π is the appropriate representation of the Lorentz group, an n×n matrix for every Λ. In this case, the indices should not be thought of as spacetime indices (sometimes called Lorentz indices), and they run from 1 to n .

  8. Special linear Lie algebra - Wikipedia

    en.wikipedia.org/wiki/Special_linear_Lie_algebra

    The Lie algebra is central to the study of special relativity, general relativity and supersymmetry: its fundamental representation is the so-called spinor representation, while its adjoint representation generates the Lorentz group SO(3,1) of special relativity.

  9. Wigner's theorem - Wikipedia

    en.wikipedia.org/wiki/Wigner's_theorem

    It was a key step towards the modern classification scheme of particle types, according to which particle types are partly characterized by which representation of the Lorentz group under which it transforms. The Lorentz group is a symmetry group of every relativistic quantum field theory. Wigner's early work laid the ground for what many ...