Search results
Results from the WOW.Com Content Network
The classification of the irreducible infinite-dimensional representations of the Lorentz group was established by Paul Dirac's doctoral student in theoretical physics, Harish-Chandra, later turned mathematician, [nb 3] in 1947.
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry:
It was a key step towards the modern classification scheme of particle types, according to which particle types are partly characterized by which representation of the Lorentz group under which it transforms. The Lorentz group is a symmetry group of every relativistic quantum field theory. Wigner's early work laid the ground for what many ...
The scalar W μ W μ is a Lorentz-invariant operator, and commutes with the four-momentum, and can thus serve as a label for irreducible unitary representations of the Poincaré group. That is, it can serve as the label for the spin , a feature of the spacetime structure of the representation, over and above the relativistically invariant label ...
For a general n-component object one may write ′ = (), where Π is the appropriate representation of the Lorentz group, an n×n matrix for every Λ. In this case, the indices should not be thought of as spacetime indices (sometimes called Lorentz indices), and they run from 1 to n .
Lorentz covariance, a related concept, is a property of the underlying spacetime manifold. Lorentz covariance has two distinct, but closely related meanings: A physical quantity is said to be Lorentz covariant if it transforms under a given representation of the Lorentz group.
The boost and rotation generators have representations denoted D(K) and D(J) respectively, the capital D in this context indicates a group representation. For the Lorentz group, the representations D(K) and D(J) of the generators K and J fulfill the following commutation rules.
Tung, Wu-Ki (1985). "Chapter 10. Representations of the Lorentz group and of the Poincare group; Wigner classification". Group Theory in Physics. World Scientific Publishing Company. ISBN 978-9971966577. Weinberg, S. (2002). "Chapter 2. Relativistic quantum mechanics". The Quantum Theory of Fields. Vol. I. Cambridge University Press. ISBN 0-521 ...