Search results
Results from the WOW.Com Content Network
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.
Successive parabolic interpolation is a technique for finding the extremum (minimum or maximum) of a continuous unimodal function by successively fitting parabolas (polynomials of degree two) to a function of one variable at three unique points or, in general, a function of n variables at 1+n(n+3)/2 points, and at each iteration replacing the "oldest" point with the extremum of the fitted ...
Quasi-Newton methods for optimization are based on Newton's method to find the stationary points of a function, points where the gradient is 0. Newton's method assumes that the function can be locally approximated as a quadratic in the region around the optimum, and uses the first and second derivatives to find the stationary point.
The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the third-degree polynomial y ( x ) = 7 x 3 – 8 x 2 – 3 x + 3 , the 2-point Gaussian quadrature rule even returns an exact result.
For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
A line will connect any two points, so a first degree polynomial equation is an exact fit through any two points with distinct x coordinates. If the order of the equation is increased to a second degree polynomial, the following results: = + +. This will exactly fit a simple curve to three points.
Newton's method requires that the derivative can be calculated directly. An analytical expression for the derivative may not be easily obtainable or could be expensive to evaluate. In these situations, it may be appropriate to approximate the derivative by using the slope of a line through two nearby points on the function.