Search results
Results from the WOW.Com Content Network
vapour density = molar mass of gas / molar mass of H 2 vapour density = molar mass of gas / 2.01568 vapour density = 1 ⁄ 2 × molar mass (and thus: molar mass = ~2 × vapour density) For example, vapour density of mixture of NO 2 and N 2 O 4 is 38.3. Vapour density is a dimensionless quantity. Vapour density = density of gas / density of ...
Dumas used the method to determine the vapour densities of elements (mercury, phosphorus, sulfur) and inorganic compounds. [3] Today, modern methods such as mass spectrometry and elemental analysis are used to determine the molecular weight of a substance.
The saturation vapor density (SVD) is the maximum density of water vapor in air at a given temperature. [1] The concept is related to saturation vapor pressure (SVP). It can be used to calculate exact quantity of water vapor in the air from a relative humidity (RH = % local air humidity measured / local total air humidity possible ) Given an RH percentage, the density of water in the air is ...
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1]
Here is a similar formula from the 67th edition of the CRC handbook. Note that the form of this formula as given is a fit to the Clausius–Clapeyron equation, which is a good theoretical starting point for calculating saturation vapor pressures: log 10 (P) = −(0.05223)a/T + b, where P is in mmHg, T is in kelvins, a = 38324, and b = 8.8017.
The vapour displaces its own volume of air. The volume of air displaced at experimental temperature and pressure is calculated. Then volume of air displaced at standard temperature and pressure is calculated. Using this, mass of air displaced at 2.24 × 10 −2 m 3 of vapour at STP is calculated. This value represents the molecular mass of the ...
Water vapor can also be indirect evidence supporting the presence of extraterrestrial liquid water in the case of some planetary mass objects. Water vapor, which reacts to temperature changes, is referred to as a 'feedback', because it amplifies the effect of forces that initially cause the warming. Therefore, it is a greenhouse gas. [2]
The table above gives properties of the vapor–liquid equilibrium of anhydrous ammonia at various temperatures. The second column is vapor pressure in kPa. The third column is the density of the liquid phase. The fourth column is the density of the vapor. The fifth column is the heat of vaporization needed to convert one gram of liquid to vapor.