enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = ⁠ √ 8φ+7 / 2 ⁠ = ⁠ √ 11+4 √ 5 / 2 ⁠ ≈ 2.233.

  3. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry. ... 9: 60{3}+12{5}+12 ...

  4. Heptagon - Wikipedia

    en.wikipedia.org/wiki/Heptagon

    In geometry, a heptagon or septagon is a seven-sided polygon or 7-gon.. The heptagon is sometimes referred to as the septagon, using "sept-" (an elision of septua-, a Latin-derived numerical prefix, rather than hepta-, a Greek-derived numerical prefix; both are cognate) together with the Greek suffix "-agon" meaning angle.

  5. Heptahedron - Wikipedia

    en.wikipedia.org/wiki/Heptahedron

    There are 34 topologically distinct convex heptahedra, excluding mirror images. [2] ( Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.)

  6. Deltahedron - Wikipedia

    en.wikipedia.org/wiki/Deltahedron

    The deltahedron is named by Martyn Cundy, after the Greek capital letter delta resembling a triangular shape Δ. [1] The deltahedron can be categorized by the property of convexity . There are eight convex deltahedra, which can be used in the applications of chemistry as in the polyhedral skeletal electron pair theory and chemical compounds .

  7. Truncated icosahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_icosahedron

    Each of the 12 vertices at the one-third mark of each edge creates 12 pentagonal faces and transforms the original 20 triangle faces into regular hexagons. [1] Therefore, the resulting polyhedron has 32 faces, 90 edges, and 60 vertices. [2] A Goldberg polyhedron is one whose faces are 12 pentagons and some multiple of 10 hexagons.

  8. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertices ...

  9. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    The smallest abstract groups that are not any symmetry group in 3D, are the quaternion group (of order 8), Z 3 × Z 3 (of order 9), the dicyclic group Dic 3 (of order 12), and 10 of the 14 groups of order 16. The column "# of order 2 elements" in the following tables shows the total number of isometry subgroups of types C 2, C i, C s. This ...