Ads
related to: capillary flow equation for water pressure regulator for hometemu.com has been visited by 1M+ users in the past month
- Jaw-dropping prices
Countless Choices For Low Prices
Up To 90% Off For Everything
- The best to the best
Find Everything You Need
Enjoy Wholesale Prices
- All Clearance
Daily must-haves
Special for you
- Where To Buy
Daily must-haves
Special for you
- Jaw-dropping prices
Search results
Results from the WOW.Com Content Network
The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a circular tube.
For a water-filled glass tube in air at standard conditions for temperature and pressure, γ = 0.0728 N/m at 20 °C, ρ = 1000 kg/m 3, and g = 9.81 m/s 2. Because water spreads on clean glass, the effective equilibrium contact angle is approximately zero. [4] For these values, the height of the water column is
Capillary pressure can also be utilized to block fluid flow in a microfluidic device. A schematic of fluid flowing through a microfluidic device by capillary action (refer to image of capillary rise of water for left and right contact angles in microfluidic channels) The capillary pressure in a microchannel can be described as:
Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
Leverett also pointed out that the capillary pressure shows significant hysteresis effects. This means that the capillary pressure for a drainage process is different from the capillary pressure of an imbibition process with the same fluid phases. Hysteresis does not change the shape of the governing flow equation, but it increases (usually ...
The Bosanquet equation is a differential equation that is second-order in the time derivative, similar to Newton's Second Law, and therefore takes into account the fluid inertia. Equations of motion, like the Washburn's equation, that attempt to explain a velocity (instead of acceleration) as proportional to a driving force are often described ...
The interfacial (surface) tension, St, (dyne cm −1), can be calculated by applying the equation of capillary rise method (when the contact angle Ө → 0): = where: h (cm) is the height of Hg column above the Hg meniscus in the capillary; r (cm) is the radius of capillary
Ads
related to: capillary flow equation for water pressure regulator for hometemu.com has been visited by 1M+ users in the past month