enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice energy - Wikipedia

    en.wikipedia.org/wiki/Lattice_energy

    In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids.

  3. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

  4. Threshold displacement energy - Wikipedia

    en.wikipedia.org/wiki/Threshold_displacement_energy

    The initial stage A. of defect creation, until all excess kinetic energy has dissipated in the lattice and it is back to its initial temperature T 0, takes < 5 ps. This is the fundamental ("primary damage") threshold displacement energy, and also the one usually simulated by molecular dynamics computer simulations.

  5. Born–Mayer equation - Wikipedia

    en.wikipedia.org/wiki/Born–Mayer_equation

    The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound.It is a refinement of the Born–Landé equation by using an improved repulsion term.

  6. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...

  7. Kapustinskii equation - Wikipedia

    en.wikipedia.org/wiki/Kapustinskii_equation

    The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.

  8. Crystal structure prediction - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure_prediction

    This results in typical lattice and free energy differences between polymorphs that are often only a few kJ/mol, very rarely exceeding 10 kJ/mol. [10] Crystal structure prediction methods often locate many possible structures within this small energy range. These small energy differences are challenging to predict reliably without excessive ...

  9. Lattice model (physics) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(physics)

    The Ising model is given by the usual cubic lattice graph = (,) where is an infinite cubic lattice in or a period cubic lattice in , and is the edge set of nearest neighbours (the same letter is used for the energy functional but the different usages are distinguishable based on context).