Search results
Results from the WOW.Com Content Network
They are analogous to the calculation of retention factor for a paper chromatography separation, but describes how well HPLC separates a mixture into two or more components that are detected as peaks (bands) on a chromatogram. The HPLC parameters are the: efficiency factor(N), the retention factor (kappa prime), and the separation factor (alpha ...
In chromatography, the retardation factor (R) is the fraction of an analyte in the mobile phase of a chromatographic system. [1] In planar chromatography in particular, the retardation factor R F is defined as the ratio of the distance traveled by the center of a spot to the distance traveled by the solvent front. [ 2 ]
The [N 1/2 /4] term is the column factor, the [(α-1)/α] term is the thermodynamic factor, and the [k 2 '/(1+k 2 ')] term is the retention factor. The 3 factors are not completely independent, but they are very close, and can be treated as such.
Example chromatogram showing signal as a function of retention time. In chromatography, resolution is a measure of the separation of two peaks of different retention time t in a chromatogram. [1] [2] [3] [4]
The solute will partition between the water and the stationary phase (KSW), the water and the micelles (KMW), and the micelles and the stationary phase (KSM). Armstrong and Nome derived an equation describing the partition coefficients in terms of the retention factor, formally capacity factor, k¢. In HPLC, the capacity factor represents the ...
The Purnell equation is an equation used in analytical chemistry to calculate the resolution R s between two peaks in a chromatogram. [1] [2]= (′ + ′) where R s is the resolution between the two peaks
Two well resolved peaks in a chromatogram. The plate height given as: = with the column length and the number of theoretical plates can be estimated from a chromatogram by analysis of the retention time for each component and its standard deviation as a measure for peak width, provided that the elution curve represents a Gaussian curve.
The response factor can be expressed on a molar, volume or mass [1] basis. Where the true amount of sample and standard are equal: = where A is the signal (e.g. peak area) and the subscript i indicates the sample and the subscript st indicates the standard. [2]