Search results
Results from the WOW.Com Content Network
These algorithms find the minimum spanning forest in a possibly disconnected graph; in contrast, the most basic form of Prim's algorithm only finds minimum spanning trees in connected graphs. However, running Prim's algorithm separately for each connected component of the graph, it can also be used to find the minimum spanning forest. [9]
If is edge-unweighted every spanning tree possesses the same number of edges and thus the same weight. In the edge-weighted case, the spanning tree, the sum of the weights of the edges of which is lowest among all spanning trees of , is called a minimum spanning tree (MST). It is not necessarily unique.
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
Minimum degree spanning tree; Minimum k-cut; Minimum k-spanning tree; Minor testing (checking whether an input graph contains an input graph as a minor); the same holds with topological minors; Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in ...
The key insight to the algorithm is a random sampling step which partitions a graph into two subgraphs by randomly selecting edges to include in each subgraph. The algorithm recursively finds the minimum spanning forest of the first subproblem and uses the solution in conjunction with a linear time verification algorithm to discard edges in the graph that cannot be in the minimum spanning tree.
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
Examples of such greedy algorithms are Kruskal's algorithm and Prim's algorithm for finding minimum spanning trees and the algorithm for finding optimum Huffman trees. Greedy algorithms appear in the network routing as well. Using greedy routing, a message is forwarded to the neighbouring node which is "closest" to the destination.
Example of rectilinear minimum spanning tree from random points. In graph theory, the rectilinear minimum spanning tree (RMST) of a set of n points in the plane (or more generally, in ) is a minimum spanning tree of that set, where the weight of the edge between each pair of points is the rectilinear distance between those two points.