enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    TI SR-50A, a 1975 calculator with a factorial key (third row, center right) The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]

  3. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    For example, the factorial function can be defined recursively by the equations 0! = 1 and, for all n > 0, n! = n(n − 1)!. Neither equation by itself constitutes a complete definition; the first is the base case, and the second is the recursive case.

  4. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    SymPy is an open-source Python library for symbolic computation.It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3]

  5. Borwein's algorithm - Wikipedia

    en.wikipedia.org/wiki/Borwein's_algorithm

    Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.

  6. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of n {\displaystyle n} .

  7. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    2.4 Modified-factorial denominators. ... See Faulhaber's formula. ... The following is a useful property to calculate low-integer-order polylogarithms recursively in ...

  8. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae.Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places.

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.