Search results
Results from the WOW.Com Content Network
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The stiffness, , of a body is a measure of the resistance offered by an elastic body to deformation. For an elastic body with a single degree of freedom (DOF) (for example, stretching or compression of a rod), the stiffness is defined as k = F δ {\displaystyle k={\frac {F}{\delta }}} where,
A flat spring fixed only at one end like a cantilever, while the free-hanging end takes the load. Coil spring Also known as a helical spring. A spring (made by winding a wire around a cylinder) is of two types: Tension or extension springs are designed to become longer under load. Their turns (loops) are normally touching in the unloaded ...
A spring system can be thought of as the simplest case of the finite element method for solving problems in statics. Assuming linear springs and small deformation (or restricting to one-dimensional motion) a spring system can be cast as a (possibly overdetermined) system of linear equations or equivalently as an energy minimization problem.
The force in the spring is (roughly) the vertical force at the contact patch divided by the motion ratio, and the spring rate is the wheel rate divided by the motion ratio squared. I R = S p r i n g D i s p l a c e m e n t W h e e l D i s p l a c e m e n t . {\displaystyle IR={\frac {SpringDisplacement}{WheelDisplacement}}.}
Mechanical impedance is a measure of how much a structure resists motion when subjected to a harmonic force. It relates forces with velocities acting on a mechanical system.
The effective mass of the spring in a spring-mass system when using a heavy spring (non-ideal) of uniform linear density is of the mass of the spring and is independent of the direction of the spring-mass system (i.e., horizontal, vertical, and oblique systems all have the same effective mass). This is because external acceleration does not ...