Search results
Results from the WOW.Com Content Network
Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number.
Each parity bit is calculated along a different dimensional axis. The code can be characterized by its dimension vector = [,,,], where defines the size of the block or multi-block in the th dimension. The code length can be expressed as = = while the number of information bits is given by
The parity bit may be used within another constituent code. In an example using the DVB-S2 rate 2/3 code the encoded block size is 64800 symbols (N=64800) with 43200 data bits (K=43200) and 21600 parity bits (M=21600). Each constituent code (check node) encodes 16 data bits except for the first parity bit which encodes 8 data bits.
Each data bit is included in a unique set of 2 or more parity bits, as determined by the binary form of its bit position. Parity bit 1 covers all bit positions which have the least significant bit set: bit 1 (the parity bit itself), 3, 5, 7, 9, etc.
A message that is m bits long can be viewed as a corner of the m-dimensional hypercube. The effect of a checksum algorithm that yields an n-bit checksum is to map each m-bit message to a corner of a larger hypercube, with dimension m + n. The 2 m + n corners of this hypercube represent all possible received messages.
Note that even parity polynomials in GF(2) with degree greater than 1 are never primitive. Even parity polynomial marked as primitive in this table represent a primitive polynomial multiplied by (+). The most significant bit of a polynomial is always 1, and is not shown in the hex representations.
Since the source is only 4 bits then there are only 16 possible transmitted words. Included is the eight-bit value if an extra parity bit is used (see Hamming(7,4) code with an additional parity bit). (The data bits are shown in blue; the parity bits are shown in red; and the extra parity bit shown in green.)
Erasure coding was invented by Irving Reed and Gustave Solomon in 1960. [1]There are many different erasure coding schemes. The most popular erasure codes are Reed-Solomon coding, Low-density parity-check code (LDPC codes), and Turbo codes.