Search results
Results from the WOW.Com Content Network
It can also be described as the shortest path distance in a rotation graph, a graph that has a vertex for each binary tree on a given left-to-right sequence of nodes and an edge for each rotation between two trees. [2] This rotation graph is exactly the graph of vertices and edges of an associahedron. [3]
Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:
A tree can be rebalanced using rotations. After a rotation, the side of the rotation increases its height by 1 whilst the side opposite the rotation decreases its height similarly. Therefore, one can strategically apply rotations to nodes whose left child and right child differ in height by more than 1.
The "function", "argument" and the "value" are either combinators or binary trees. If they are binary trees, they may be thought of as functions too, if needed. The evaluation operation is defined as follows: (x, y, and z represent expressions made from the functions S, K, and I, and set values): I returns its argument: Ix = x
A bitwise AND is a binary operation that takes two equal-length binary representations and performs the logical AND operation on each pair of the corresponding bits. Thus, if both bits in the compared position are 1, the bit in the resulting binary representation is 1 (1 × 1 = 1); otherwise, the result is 0 (1 × 0 = 0 and 0 × 0 = 0).
Signed binary angle measurement. Black is traditional degrees representation, green is a BAM as a decimal number and red is hexadecimal 32-bit BAM. In this figure the 32-bit binary integers are interpreted as signed binary fixed-point values with scaling factor 2 −31, representing fractions between −1.0 (inclusive) and +1.0 (exclusive).
This motivates the following general definition: For a string s over an alphabet Σ, let shift(s) denote the set of circular shifts of s, and for a set L of strings, let shift(L) denote the set of all circular shifts of strings in L. If L is a cyclic code, then shift(L) ⊆ L; this is a necessary condition for L being a cyclic language.
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...