Search results
Results from the WOW.Com Content Network
The fast or biological cycle can complete within years, moving carbon from atmosphere to biosphere, then back to the atmosphere. The slow or geological cycle may extend deep into the mantle and can take millions of years to complete, moving carbon through the Earth's crust between rocks, soil, ocean and atmosphere. [2]
As an example, the fast carbon cycle is illustrated in the diagram below on the left. This cycle involves relatively short-term biogeochemical processes between the environment and living organisms in the biosphere. It includes movements of carbon between the atmosphere and terrestrial and marine ecosystems, as well as soils and seafloor ...
Carbon storage in the biosphere is influenced by a number of processes on different time-scales: while carbon uptake through autotrophic respiration follows a diurnal and seasonal cycle, carbon can be stored in the terrestrial biosphere for up to several centuries, e.g. in wood or soil.
Models of intermediate complexity bridge the gap. One example is the Climber-3 model. Its atmosphere is a 2.5-dimensional statistical-dynamical model with 7.5° × 22.5° resolution and time step of half a day; the ocean is MOM-3 (Modular Ocean Model) with a 3.75° × 3.75° grid and 24 vertical levels. [30]
Soil carbon is present in two forms: inorganic and organic. Soil inorganic carbon consists of mineral forms of carbon, either from weathering of parent material, or from reaction of soil minerals with atmospheric CO 2. Carbonate minerals are the dominant form of soil carbon in desert climates. Soil organic carbon is present as soil organic matter.
Soil respiration is a key ecosystem process that releases carbon from the soil in the form of carbon dioxide. Carbon is stored in the soil as organic matter and is respired by plants, bacteria, fungi and animals. When this respiration occurs below ground, it is considered soil respiration. Temperature, soil moisture and nitrogen all regulate ...
Deforestation, for example, decreases the biosphere's ability to absorb carbon, thus increasing the amount of carbon in the atmosphere. [24] As the industrial use of carbon by humans is a very new dynamic on a geologic scale, it is important to be able to track sources and sinks of carbon in the atmosphere.
Furthermore, for processes such as soil thawing and rewetting, for example, large sudden changes in soil respiration can cause increased flux of soil gases such as carbon dioxide and methane, which are greenhouse gases. [3] These fluxes and interactions between soil gases and atmospheric air can further be analyzed by distance from the soil ...