Search results
Results from the WOW.Com Content Network
When expressed in percent, it is known as the mole percent or molar percentage (unit symbol %, sometimes "mol%", equivalent to cmol/mol for 10-2). The mole fraction is called amount fraction by the International Union of Pure and Applied Chemistry (IUPAC) [ 1 ] and amount-of-substance fraction by the U.S. National Institute of Standards and ...
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c {\displaystyle c} : [ 2 ]
A closely related concept is the atomic percent (or at.%), which gives the percentage of one kind of atom relative to the total number of atoms. [1] The molecular equivalents of these concepts are the molar fraction , or molar percent .
The equation can only be applied when the purged volume of vapor or gas is replaced with "clean" air or gas. For example, the equation can be used to calculate the time required at a certain ventilation rate to reduce a high carbon monoxide concentration in a room.
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
It is the same concept as volume percent (vol%) except that the latter is expressed with a denominator of 100, e.g., 18%. The volume fraction coincides with the volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients).
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
Normality is defined as the molar concentration divided by an equivalence factor . Since the definition of the equivalence factor depends on context (which reaction is being studied), the International Union of Pure and Applied Chemistry and National Institute of Standards and Technology discourage the use of normality.