enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Dimension. L T−3. Jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 (SI units) or standard gravities per second (g0 /s).

  3. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Kinetic theory of gases. The temperature of the ideal gas is proportional to the average kinetic energy of its particles. The size of helium atoms relative to their spacing is shown to scale under 1,950 atmospheres of pressure. The atoms have an average speed relative to their size slowed down here two trillion fold from that at room temperature.

  4. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    For example, if the initial population of the assembly, N(0), is 1000, then the population at time , (), is 368. A very similar equation will be seen below, which arises when the base of the exponential is chosen to be 2, rather than e. In that case the scaling time is the "half-life".

  5. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    Five atoms are colored red so their paths of motion are easier to see. In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into other forms such as heat, noise ...

  6. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form: where is the mass and is the speed (magnitude of the velocity) of the body. In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules.

  7. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    Statistical mechanics. Maxwell–Boltzmann statistics can be used to derive the Maxwell–Boltzmann distribution of particle speeds in an ideal gas. Shown: distribution of speeds for 10 6 oxygen molecules at -100, 20, and 600 °C. In statistical mechanics, Maxwell–Boltzmann statistics describes the distribution of classical material particles ...

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    The first general equation of motion developed was Newton's second law of motion. In its most general form it states the rate of change of momentum p = p(t) = mv(t) of an object equals the force F = F(x(t), v(t), t) acting on it, [13]: 1112. The force in the equation is not the force the object exerts.

  9. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    The van der Waals equation, named for its originator, the Dutch physicist Johannes Diderik van der Waals, is an equation of state that extends the ideal gas law to include the non-zero size of gas molecules and the interactions between them (both of which depend on the specific substance). As a result the equation is able to model the liquid ...