enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heaviside step function - Wikipedia

    en.wikipedia.org/wiki/Heaviside_step_function

    The Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or 𝟙), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value H(0) are in use.

  3. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following functions and variables are used in the table below: δ represents the Dirac delta function. u(t) represents the Heaviside step function. Literature may refer to this by other notation, including () or (). Γ(z) represents the Gamma function. γ is the Euler–Mascheroni constant. t is a real number.

  4. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  5. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory , step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time.

  6. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    If u is the Heaviside step function, equal to zero when its argument is less than zero, to one-half when its argument equals zero, and to one when its argument is greater than zero, then the Laplace transform may be defined in terms of the two-sided Laplace transform by

  7. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Thus, the Gibbs phenomenon can be seen as the result of convolving a Heaviside step function (if periodicity is not required) or a square wave (if periodic) with a sinc function: the oscillations in the sinc function cause the ripples in the output. The sine integral, exhibiting the Gibbs phenomenon for a step function on the real line

  8. Analog signal processing - Wikipedia

    en.wikipedia.org/wiki/Analog_signal_processing

    A unit step function, also called the Heaviside step function, is a signal that has a magnitude of zero before zero and a magnitude of one after zero. The symbol for a unit step is u(t). If a step is used as the input to a system, the output is called the step response.

  9. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    If f is a Schwartz function, then τ x f is the convolution with a translated Dirac delta function τ x f = f ∗ τ x δ. So translation invariance of the convolution of Schwartz functions is a consequence of the associativity of convolution. Furthermore, under certain conditions, convolution is the most general translation invariant operation.