Search results
Results from the WOW.Com Content Network
The conversion of ethanol to ethylene is a fundamental example: [3] [4] CH 3 CH 2 OH → H 2 C=CH 2 + H 2 O. The reaction is accelerated by acid catalysts such as sulfuric acid and certain zeolites. These reactions often proceed via carbocation intermediates as shown for the dehydration of cyclohexanol. [5] Some alcohols are prone to dehydration.
The reaction, in general, obeys Zaitsev's Rule, which states that the most stable (usually the most substituted) alkene is formed. Tertiary alcohols are eliminated easily at just above room temperature, but primary alcohols require a higher temperature. This is a diagram of acid catalyzed dehydration of ethanol to produce ethylene:
Vinyl alcohol, also called ethenol (IUPAC name; not ethanol) or ethylenol, is the simplest enol. With the formula C H 2 CHOH, it is a labile compound that converts to acetaldehyde immediately upon isolation near room temperature. [1] It is not a practical precursor to any compound.
Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula CH 3 CH 2 OH. It is an alcohol, with its formula also written as C 2 H 5 OH, C 2 H 6 O or EtOH, where Et stands for ethyl. Ethanol is a volatile, flammable, colorless liquid with a characteristic wine-like ...
In chemistry, a hydration reaction is a chemical reaction in which a substance combines with water. In organic chemistry, water is added to an unsaturated substrate, which is usually an alkene or an alkyne. This type of reaction is employed industrially to produce ethanol, isopropanol, and butan-2-ol. [1]
The dominant ethanol feedstock in warmer regions is sugarcane. [8] In temperate regions, corn or sugar beets are used. [8] [9] In the United States, the main feedstock for the production of ethanol is currently corn. [8] Approximately 2.8 gallons of ethanol are produced from one bushel of corn (0.42 liter per kilogram).
It is usually prepared by the addition of hydrogen bromide to ethene: H 2 C=CH 2 + HBr → H 3 C-CH 2 Br. Bromoethane is inexpensive and would rarely be prepared in the laboratory. A laboratory synthesis includes reacting ethanol with a mixture of hydrobromic and sulfuric acids.
Here ethyl chloride reacts with potassium hydroxide, typically in a solvent such as ethanol, giving ethylene. Likewise, 1-chloropropane and 2-chloropropane give propene. Zaitsev's rule helps to predict regioselectivity for this reaction type.