enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    which tends to zero simultaneously as the previous expression. An important case is when the curve is the graph of a real function (a function of one real variable and returning real values). The graph of the function y = ƒ(x) is the set of points of the plane with coordinates (x,ƒ(x)). For this, a parameterization is

  3. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In various areas of mathematics, the zero set of a function is the set of all its zeros. More precisely, if f : X → R {\displaystyle f:X\to \mathbb {R} } is a real-valued function (or, more generally, a function taking values in some additive group ), its zero set is f − 1 ( 0 ) {\displaystyle f^{-1}(0)} , the inverse image of { 0 ...

  4. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    where the zero and one entries of are treated as numerical, rather than logical as for simple graphs, values, explaining the difference in the results - for simple graphs, the symmetrized graph still needs to be simple with its symmetrized adjacency matrix having only logical, not numerical values, e.g., the logical sum is 1 v 1 = 1, while the ...

  5. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An important application is Newton–Raphson division, which can be used to quickly find the reciprocal of a number a, using only multiplication and subtraction, that is to say the number x such that ⁠ 1 / x ⁠ = a. We can rephrase that as finding the zero of f(x) = ⁠ 1 / x ⁠ − a. We have f ′ (x) = − ⁠ 1 / x 2 ⁠. Newton's ...

  7. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    Similarly, when dealing with complex variables, a critical point is a point in the function's domain where its derivative is equal to zero (or the function is not holomorphic). [3] [4] Likewise, for a function of several real variables, a critical point is a value in its domain where the gradient norm is equal to zero (or undefined). [5]

  8. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    If the graph has n vertices and m edges, then: In the matrix theory of graphs, the nullity of the graph is the nullity of the adjacency matrix A of the graph. The nullity of A is given by n − r where r is the rank of the adjacency matrix. This nullity equals the multiplicity of the eigenvalue 0 in the spectrum of the adjacency matrix. See ...

  9. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Since has zeros inside the disk | | < (because >), it follows from Rouché's theorem that also has the same number of zeros inside the disk. One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity).