enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Georg Cantor published this proof in 1891, [1] [2]: 20– [3] but it was not his first proof of the uncountability of the real numbers, which appeared in 1874. [ 4 ] [ 5 ] However, it demonstrates a general technique that has since been used in a wide range of proofs, [ 6 ] including the first of Gödel's incompleteness theorems [ 2 ] and ...

  3. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  4. Controversy over Cantor's theory - Wikipedia

    en.wikipedia.org/wiki/Controversy_over_Cantor's...

    [2] His new proof uses his diagonal argument to prove that there exists an infinite set with a larger number of elements (or greater cardinality) than the set of natural numbers N = {1, 2, 3, ...}. This larger set consists of the elements ( x 1 , x 2 , x 3 , ...), where each x n is either m or w . [ 3 ]

  5. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    The proof of Cantor's second theorem came from Dedekind. However, it omits Dedekind's explanation of why the limits a ∞ and b ∞ exist. [45] Cantor restricted his first theorem to the set of real algebraic numbers. The proof he was using demonstrates the countability of the set of all algebraic numbers. [20]

  6. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  7. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    Symbolically, if the cardinality of is denoted as , the cardinality of the continuum is c = 2 ℵ 0 > ℵ 0 . {\displaystyle {\mathfrak {c}}=2^{\aleph _{0}}>\aleph _{0}.} This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities.

  8. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    Besides the cardinality, which describes the size of a set, ordered sets also form a subject of set theory. The axiom of choice guarantees that every set can be well-ordered, which means that a total order can be imposed on its elements such that every nonempty subset has a first element with respect to that order.

  9. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The cardinality of any infinite ordinal number is an aleph number. Every aleph is the cardinality of some ordinal. The least of these is its initial ordinal. Any set whose cardinality is an aleph is equinumerous with an ordinal and is thus well-orderable. Each finite set is well-orderable, but does not have an aleph as its cardinality.