Search results
Results from the WOW.Com Content Network
Cicero Discovering the Tomb of Archimedes (1805) by Benjamin West. Archimedes was born c. 287 BC in the seaport city of Syracuse, Sicily, at that time a self-governing colony in Magna Graecia. The date of birth is based on a statement by the Byzantine Greek scholar John Tzetzes that Archimedes lived for 75 years before his death in 212 BC. [9]
The forces at work in buoyancy as discovered by Archimedes. Note that the object is floating because the upward force of buoyancy is equal to the downward force of gravity . The fundamental principles of hydrostatics and dynamics were given by Archimedes in his work On Floating Bodies ( Ancient Greek : Περὶ τῶν ὀχουμένων ...
Archimedes did not admit the method of indivisibles as part of rigorous mathematics, and therefore did not publish his method in the formal treatises that contain the results. In these treatises, he proves the same theorems by exhaustion, finding rigorous upper and lower bounds which both converge to the answer required. Nevertheless, the ...
Archimedes' principle (also spelled Archimedes's principle) states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of ...
Archimedes' investigation of paraboloids was possibly an idealization of the shapes of ships' hulls. Some of the paraboloids float with the base under water and the summit above water, similar to the way that icebergs float. Of Archimedes' works that survive, the second book of On Floating Bodies is considered his most mature work. [6]
The Archimedes Palimpsest is a parchment codex palimpsest, originally a Byzantine Greek copy of a compilation of Archimedes and other authors. It contains two works of Archimedes that were thought to have been lost (the Ostomachion and the Method of Mechanical Theorems ) and the only surviving original Greek edition of his work On Floating ...
The lever and its properties were already well known before the time of Archimedes, and he was not the first to provide an analysis of the principle involved. [5] The earlier Mechanical Problems, once attributed to Aristotle but most likely written by one of his successors, contains a loose proof of the law of the lever without employing the concept of centre of gravity.
Archimedes rounded this number up to 10,000 (a myriad) to make calculations easier, again, noting that the resulting number will exceed the actual number of grains of sand. The cube of 10,000 is a trillion (10 12 ); and multiplying a billion (the number of grains of sand in a dactyl-sphere) by a trillion (number of dactyl-spheres in a stadium ...