Search results
Results from the WOW.Com Content Network
The chair conformation of six-membered rings have a dihedral angle of 60° between adjacent substituents thus usually making it the most stable conformer. Since there are two possible chair conformation steric and stereoelectronic effects such as the anomeric effect, 1,3-diaxial interactions, dipoles and intramolecular hydrogen bonding must be taken into consideration when looking at relative ...
The correct three-dimensional structure is essential to function, although some parts of functional proteins may remain unfolded, [3] indicating that protein dynamics are important. Failure to fold into a native structure generally produces inactive proteins, but in some instances, misfolded proteins have modified or toxic functionality.
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.
Three-dimensional structure of a protein. Structural bioinformatics is the branch of bioinformatics that is related to the analysis and prediction of the three-dimensional structure of biological macromolecules such as proteins, RNA, and DNA. It deals with generalizations about macromolecular 3D structures such as comparisons of overall folds ...
Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. [1] The two most common secondary structural elements are alpha helices and beta sheets , though beta turns and omega loops occur as well.
Quaternary structure is the three-dimensional structure consisting of the aggregation of two or more individual polypeptide chains (subunits) that operate as a single functional unit . The resulting multimer is stabilized by the same non-covalent interactions and disulfide bonds as in tertiary structure.
Protein tertiary structure is the three-dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains and the backbone may interact and bond in a number of ways. The interactions and bonds of side chains within a ...
Ligand binding to a receptor protein alters the conformation by affecting the three-dimensional shape orientation. The conformation of a receptor protein composes the functional state. Ligands include substrates, inhibitors, activators, signaling lipids, and neurotransmitters.