Search results
Results from the WOW.Com Content Network
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.
Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.
The poise (symbol P; / p ɔɪ z, p w ɑː z /) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). [1] It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation). The centipoise (1 cP = 0.01 P) is more commonly used than the poise itself.
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
Tears of wine show clearly in the shadow of this glass of wine with a 13.5% alcohol content. As an example, wine may exhibit a visible effect called "tears of wine". The effect is a consequence of the fact that alcohol has a lower surface tension and higher volatility than water. The water/alcohol solution rises up the surface of the glass ...
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
A built-in density measurement based on the oscillating U-tube principle allows the determination of kinematic viscosity from the measured dynamic viscosity employing the relation =, where: ν is the kinematic viscosity (mm 2 /s), η is the dynamic viscosity (mPa·s), ρ is the density (g/cm 3).