Search results
Results from the WOW.Com Content Network
Pure jets and pure plumes define flows that are driven entirely by momentum and buoyancy effects, respectively. Flows between these two limits are usually described as forced plumes or buoyant jets. "Buoyancy is defined as being positive" when, in the absence of other forces or initial motion, the entering fluid would tend to rise.
Buoyancy is a function of the force of gravity or other source of acceleration on objects of different densities, and for that reason is considered an apparent force, in the same way that centrifugal force is an apparent force as a function of inertia. Buoyancy can exist without gravity in the presence of an inertial reference frame, but ...
Suppose the same iron block is reshaped into a bowl. It still weighs 1 ton, but when it is put in water, it displaces a greater volume of water than when it was a block. The deeper the iron bowl is immersed, the more water it displaces, and the greater the buoyant force acting on it. When the buoyant force equals 1 ton, it will sink no farther.
Neutral buoyancy occurs when an object's average density is equal to the density of the fluid in which it is immersed, resulting in the buoyant force balancing the force of gravity that would otherwise cause the object to sink (if the body's density is greater than the density of the fluid in which it is immersed) or rise (if it is less).
Buoyancy force is the defined as the force exerted on the body or an object when inserted in a fluid. Buoyancy force is based on the basic principle of pressure variation with depth, since pressure increases with depth. Hence buoyancy force arises as pressure on the bottom surface of the immersed object is greater than that at the top.
More technically, CAPE is the integrated amount of work that the upward (positive) buoyancy force would perform on a given mass of air (called an air parcel) if it rose vertically through the entire atmosphere. Positive CAPE will cause the air parcel to rise, while negative CAPE will cause the air parcel to sink.
Diagram showing an air parcel path when raised along B-C-E compared to the surrounding air mass Temperature (T) and humidity (Tw); see CAPE. The level of free convection (LFC) is the altitude in the atmosphere where an air parcel lifted adiabatically until saturation becomes warmer than the environment at the same level, so that positive buoyancy can initiate self-sustained convection.
CAPE is effectively the positive buoyancy of an air parcel and is an indicator of atmospheric instability, which makes it valuable in predicting severe weather. CIN, convective inhibition , is effectively negative buoyancy, expressed B- ; the opposite of convective available potential energy (CAPE) , which is expressed as B+ or simply B.