Search results
Results from the WOW.Com Content Network
Critical power and W prime can be interesting values to learn for yourself, and if it sounds like a fun testing process to you, then by all means, get out there and find your critical power.
Illustration of the power of a statistical test, for a two sided test, through the probability distribution of the test statistic under the null and alternative hypothesis. α is shown as the blue area, the probability of rejection under null, while the red area shows power, 1 − β, the probability of correctly rejecting under the alternative.
Region of rejection / Critical region: The set of values of the test statistic for which the null hypothesis is rejected. Power of a test (1 − β) Size: For simple hypotheses, this is the test's probability of incorrectly rejecting the null hypothesis. The false positive rate. For composite hypotheses this is the supremum of the probability ...
Under normal circumstances, a critical or supercritical fission reaction (one that is self-sustaining in power or increasing in power) should only occur inside a safely shielded location, such as a reactor core or a suitable test environment. A criticality accident occurs if the same reaction is achieved unintentionally, for example in an ...
In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α. For example, according to the Neyman–Pearson lemma , the likelihood-ratio test is UMP for testing simple (point) hypotheses.
Duncan's multiple range test makes use of the studentized range distribution in order to determine critical values for comparisons between means. Note that different comparisons between means may differ by their significance levels- since the significance level is subject to the size of the subset of means in question.
Once the criticality assessment is completed for each failure mode of each item, the FMECA matrix may be sorted by severity and qualitative probability level or quantitative criticality number. This enables the analysis to identify critical items and critical failure modes for which design mitigation is desired.
Critical mass experiments determine the quantity of fissile material required for criticality with a variety of fissile material compositions, densities, shapes, and reflectors. They can be subcritical or supercritical, in which case significant radiation fluxes can be produced. This type of test has resulted in several criticality accidents.