Search results
Results from the WOW.Com Content Network
Basic ways that neurons can interact with each other when converting input to output. Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs ...
The compound muscle action potential (CMAP) or compound motor action potential is an electrodiagnostic medicine investigation (electrical study of muscle function). The CMAP idealizes the summation of a group of almost simultaneous action potentials from several muscle fibers in the same area.
In neurophysiology, the Compound action potential (or CAP) refers to various evoked potentials representing the summation of synchronized individual action potentials generated by a group of neurons or muscle fibers in response to a stimulus. [1]
Signal transmission from nerve to muscle at the motor end plate. The neuromuscular junction is the synapse that is formed between an alpha motor neuron (α-MN) and the skeletal muscle fiber. In order for a muscle to contract, an action potential is first propagated down a nerve until it reaches the axon terminal of the motor neuron.
In that study, an increase in muscle fiber conduction velocity was observed when there was a higher level of voluntary muscle contraction, which agrees with the gradual recruitment of higher-force muscle types. [16] In Wistar rats, it was found that cell size is the crucial property in determining neuronal recruitment. [17]
The muscle fibers belonging to one motor unit can be spread throughout part, or most of the entire muscle, depending on the number of fibers and size of the muscle. [2] [3] When a motor neuron is activated, all of the muscle fibers innervated by the motor neuron are stimulated and contract. The activation of one motor neuron will result in a ...
A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber. [1] It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. [2] Muscles require innervation to function—and even just to maintain muscle tone, avoiding atrophy.
The applications of FES for children with cerebral palsy are similar to those for adults. Some common applications of FES devices include stimulation of muscles whilst mobilizing to strengthen muscle activity, to reduce muscle spasticity, to facilitate initiation of muscle activity, or to provide a memory of movement. [58]