Search results
Results from the WOW.Com Content Network
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
This characterization is because the order-linear recurrence relation can be understood as a proof of linear dependence between the sequences (+) = for =, …,. An extension of this argument shows that the order of the sequence is equal to the dimension of the sequence space generated by ( s n + r ) n = 0 ∞ {\displaystyle (s_{n+r})_{n=0 ...
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]
The Skolem problem is named after Thoralf Skolem, because of his 1933 paper proving the Skolem–Mahler–Lech theorem on the zeros of a sequence satisfying a linear recurrence with constant coefficients. [2] This theorem states that, if such a sequence has zeros, then with finitely many exceptions the positions of the zeros repeat regularly.
In mathematics a P-recursive equation is a linear equation of sequences where the coefficient sequences can be represented as polynomials.P-recursive equations are linear recurrence equations (or linear recurrence relations or linear difference equations) with polynomial coefficients.
In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that ...
The ERF method of finding a particular solution of a non-homogeneous differential equation is applicable if the non-homogeneous equation is or could be transformed to form () = + + +; where , are real or complex numbers and () is homogeneous linear differential equation of any order. Then, the exponential response formula can be applied to each ...