Search results
Results from the WOW.Com Content Network
Functionally similar features that have arisen through convergent evolution are analogous, whereas homologous structures or traits have a common origin but can have dissimilar functions. Bird, bat, and pterosaur wings are analogous structures, but their forelimbs are homologous, sharing an ancestral state despite serving different functions.
[15] [16] A structure can be homologous at one level, but only analogous at another. Pterosaur, bird and bat wings are analogous as wings, but homologous as forelimbs because the organ served as a forearm (not a wing) in the last common ancestor of tetrapods, and evolved in different ways in the three
Herbivorous dinosaurs exhibited convergent evolution towards one of two feeding strategies, one strategy resembling mammalian herbivores (emphasizing chewing-specialized morphology, with the skull acquiring and processing food) and another strategy analogous to herbivory in birds and reptiles (emphasizing a specialized gut as in the avian ...
Convergent evolution is the development of analogous structures that occurs in different species as a result of those two species facing similar environmental pressures and adapting in similar ways. It differs from divergent evolution as the species involved do not descend from a closely related common ancestor and the traits accumulated are ...
Homologous structures - structures (body parts/anatomy) which are similar in different species because the species have common descent and have evolved, usually divergently, from a shared ancestor. They may or may not perform the same function. An example is the forelimb structure shared by cats and whales.
Image credits: an1malpulse #5. Animal campaigners are calling for a ban on the public sale of fireworks after a baby red panda was thought to have died from stress related to the noise.
All vertebrate forelimbs are homologous, meaning that they all evolved from the same structures. For example, the flipper of a turtle or of a dolphin , the arm of a human, the foreleg of a horse, and the wings of both bats and birds are ultimately homologous, despite the large differences between them.
Because bats are mammals, the skeletal structures in their wings are morphologically homologous to the skeletal components found in other tetrapod forelimbs. Through adaptive evolution these structures in bats have undergone many morphological changes, such as webbed digits, elongation of the forelimb, and reduction in bone thickness. [ 1 ]