enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square root of 3 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_3

    The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as 3 {\textstyle {\sqrt {3}}} or 3 1 / 2 {\displaystyle 3^{1/2}} . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property.

  3. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    Square root of 3, Theodorus' constant [6] 1.73205 08075 68877 29352 ... Rational numbers have two continued fractions; the version in this list is the shorter one.

  4. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of x is rational if and only if x is a rational number that can be represented as a ratio of two perfect squares. (See square root of 2 for proofs that this is an irrational number, and quadratic irrational for a proof for all non-square natural numbers.)

  5. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    [2] [3] The adjective real, used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of −1. [4] The real numbers include the rational numbers, such as the integer −5 and the fraction 4 / 3. The rest of the real numbers are called irrational numbers.

  6. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    The square root of 2 is an algebraic number equal to the length of the hypotenuse of a right triangle with legs of length 1.. An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients.

  7. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    Hence, the set of real numbers consists of non-overlapping sets of rational, algebraic irrational, and transcendental real numbers. [3] For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0.

  8. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...

  9. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.