Search results
Results from the WOW.Com Content Network
The exponential of a Metzler (or quasipositive) matrix is a nonnegative matrix because of the corresponding property for the exponential of a nonnegative matrix. This is natural, once one observes that the generator matrices of continuous-time Markov chains are always Metzler matrices, and that probability distributions are always non-negative.
One of the motivations for analyzing stable vector bundles is their nice behavior in families. In fact, Moduli spaces of stable vector bundles can be constructed using the Quot scheme in many cases, whereas the stack of vector bundles is an Artin stack whose underlying set is a single point.
A matrix () is called a fundamental matrix solution if the columns form a basis of the solution set. A matrix Φ ( t ) {\displaystyle \Phi (t)} is called a principal fundamental matrix solution if all columns are linearly independent solutions and there exists t 0 {\displaystyle t_{0}} such that Φ ( t 0 ) {\displaystyle \Phi (t_{0})} is the ...
Von Neumann stability analysis is a commonly used procedure for the stability analysis of finite difference schemes as applied to linear partial differential equations. These results do not hold for nonlinear PDEs, where a general, consistent definition of stability is complicated by many properties absent in linear equations.
In the former case, the orbit is called stable; in the latter case, it is called asymptotically stable and the given orbit is said to be attracting. An equilibrium solution f e {\displaystyle f_{e}} to an autonomous system of first order ordinary differential equations is called:
Drinking coffee could extend your life up to two years, new research finds. Regular coffee consumption was found to be associated with increased health span (time spent living free from serious ...
Alabama A&M freshman linebacker Medrick Burnett Jr. died one month after sustaining a head injury in an Oct. 29 game. He was hospitalized for the entire past month.
A linear system is BIBO stable if its characteristic polynomial is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. In practice, stability is determined by applying any one of several stability criteria.