Search results
Results from the WOW.Com Content Network
The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.
Allen Hazen (August 28, 1869 – July 26, 1930) was an American civil engineer and an expert in hydraulics, flood control, water purification and sewage treatment.His career extended from 1888 to 1930, and he is, perhaps, best known for his contributions to hydraulics with the Hazen-Williams equation.
Most design standards require application of the Hazen-Williams method for determining frictional pressure losses through the piping network as water passes through it. Tree and Loop systems are simple enough that the hydraulic calculations could be performed by hand.
n is 1.85 for Hazen-Williams and; n is 2 for Darcy–Weisbach. The clockwise specifier (c) means only the flows that are moving clockwise in our loop, while the counter-clockwise specifier (cc) is only the flows that are moving counter-clockwise. This adjustment doesn't solve the problem, since most networks have several loops.
By setting the coefficient k to K, the flow rate Q to I and the exponent n to 1, the Hardy Cross method can be used to solve a simple circuit. However, because the relation between the voltage drop and current is linear, the Hardy Cross method is not necessary and the circuit can be solved using non-iterative methods.
c = discharge coefficient (unitless). This is usually 1.0 if using a diffuser. If using a wand to measure the stagnation pressure, the coefficient value depends on the shape of the flow hydrant orifice. A smooth and rounded outlet has c=0.9, a square and sharp outlet has c=0.8, and a square outlet which projects into the barrel has c=0.7.
This page was last edited on 12 March 2009, at 11:41 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
The coefficient of lift for a two-dimensional airfoil section with strictly horizontal surfaces can be calculated from the coefficient of pressure distribution by integration, or calculating the area between the lines on the distribution. This expression is not suitable for direct numeric integration using the panel method of lift approximation ...