Search results
Results from the WOW.Com Content Network
In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d).
There are five types of point group symmetry operation: identity, rotation, reflection, inversion and improper rotation or rotation-reflection. Common to all symmetry operations is that the geometrical center-point of the molecule does not change its position; hence the name point group. One can determine the elements of the point group for a ...
The symmetry elements are ordered the same way as in the symbol of corresponding point group (the group that is obtained if one removes all translational components from the space group). The symbols for symmetry elements are more diverse, because in addition to rotations axes and mirror planes, space group may contain more complex symmetry ...
For each non-linear group, the tables give the most standard notation of the finite group isomorphic to the point group, followed by the order of the group (number of invariant symmetry operations). The finite group notation used is: Z n: cyclic group of order n, D n: dihedral group isomorphic to the symmetry group of an n–sided regular ...
The point group symmetry of a molecule is defined by the presence or absence of 5 types of symmetry element. Symmetry axis: an axis around which a rotation by results in a molecule indistinguishable from the original. This is also called an n-fold rotational axis and abbreviated C n.
Finite spherical symmetry groups are also called point groups in three dimensions.There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry.
D nh is the symmetry group for a "regular" n-gonal prism and also for a "regular" n-gonal bipyramid. D nd is the symmetry group for a "regular" n-gonal antiprism, and also for a "regular" n-gonal trapezohedron. D n is the symmetry group of a partially rotated ("twisted") prism. The groups D 2 and D 2h are noteworthy in that there is no special ...
This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...