Search results
Results from the WOW.Com Content Network
X-ray atomic form factors of oxygen (blue), chlorine (green), Cl − (magenta), and K + (red); smaller charge distributions have a wider form factor. In physics , the atomic form factor , or atomic scattering factor , is a measure of the scattering amplitude of a wave by an isolated atom.
The two determinants of the F-factor are the effective atomic number (Z) of the material and the type of ionizing radiation being considered. Since the effective Z of air and soft tissue is approximately the same, the F-factor is approximately 1 for many x-ray imaging applications. However, bone has an F-factor of up to 4, due to its higher ...
The AP Program includes specifications for two calculus courses and the exam for each course. The two courses and the two corresponding exams are designated as Calculus AB and Calculus BC. Calculus AB can be offered as an AP course by any school that can organize a curriculum for students with advanced mathematical ability. [1]
A branch of mathematics that studies change and has two major sub-fields: differential calculus (concerning rates of change and slopes of curves), and integral calculus (concerning accumulation of quantities and the areas under and between curves). These two branches are related to each other by the fundamental theorem of calculus.
Anomalous X-ray scattering (MAD or SAD phasing) – the X-ray wavelength may be scanned past an absorption edge [a] of an atom, which changes the scattering in a known way. By recording full sets of reflections at three different wavelengths (far below, far above and in the middle of the absorption edge) one can solve for the substructure of ...
Characteristic X-rays are emitted when outer-shell electrons fill a vacancy in the inner shell of an atom, releasing X-rays in a pattern that is "characteristic" to each element. Characteristic X-rays were discovered by Charles Glover Barkla in 1909, [ 1 ] who later won the Nobel Prize in Physics for his discovery in 1917.
In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns ( interference patterns ) obtained in X-ray , electron and neutron ...
X-ray sources are classified by the type of material and orbital used to generate them. For example, Cu Kα X-rays are emitted from the K orbital of copper. X-ray absorption is reported as which orbital absorbed the x-ray photon. In EXAFS and XMCD the L-edge or the L absorption edge is the point where the L orbital begins to absorb x-rays.