Search results
Results from the WOW.Com Content Network
A simple application of dimensional analysis to mathematics is in computing the form of the volume of an n-ball (the solid ball in n dimensions), or the area of its surface, the n-sphere: being an n-dimensional figure, the volume scales as x n, while the surface area, being (n − 1)-dimensional, scales as x n−1.
{{Aliprantis Border Infinite Dimensional Analysis A Hitchhiker's Guide Third Edition}} will display: Aliprantis, Charalambos D.; Border, Kim C. (2006). Infinite Dimensional Analysis: A Hitchhiker's Guide (Third ed.). Berlin: Springer Science & Business Media. ISBN 978-3-540-29587-7. OCLC 262692874.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
The one-dimensional extent of an object metre (m) L: extensive: Time: t: The duration of an event: second (s) T: scalar, intensive, extensive: Mass: m: A measure of resistance to acceleration: kilogram (kg) M: extensive, scalar: Temperature: T: Average kinetic energy per degree of freedom of a system: kelvin (K) Θ or [K] intensive, scalar ...
Although named for Edgar Buckingham, the π theorem was first proved by the French mathematician Joseph Bertrand in 1878. [1] Bertrand considered only special cases of problems from electrodynamics and heat conduction, but his article contains, in distinct terms, all the basic ideas of the modern proof of the theorem and clearly indicates the theorem's utility for modelling physical phenomena.
In theoretical physics, dimensional regularization is a method introduced by Giambiagi and Bollini [1] as well as – independently and more comprehensively [2] – by 't Hooft and Veltman [3] for regularizing integrals in the evaluation of Feynman diagrams; in other words, assigning values to them that are meromorphic functions of a complex parameter d, the analytic continuation of the number ...
This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain terms in the equations for the studied flow. This may provide possibilities to neglect terms in (certain areas of) the considered flow.
It is one of several widely used low-dimensional embedding methods. [1] Isomap is used for computing a quasi-isometric, low-dimensional embedding of a set of high-dimensional data points. The algorithm provides a simple method for estimating the intrinsic geometry of a data manifold based on a rough estimate of each data point’s neighbors on ...