enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. The motivation for backpropagation is to train a multi-layered neural network such that it can learn the appropriate internal representations to allow it to learn any arbitrary mapping of input to output.

  3. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...

  4. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]

  5. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Backpropagation training algorithms fall into three categories: steepest descent (with variable learning rate and momentum, resilient backpropagation); quasi-Newton (Broyden–Fletcher–Goldfarb–Shanno, one step secant);

  6. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Backpropagation; Rescorla–Wagner model – the origin of ... It can be derived as the backpropagation algorithm for a single-layer neural network with mean-square ...

  7. Neural backpropagation - Wikipedia

    en.wikipedia.org/wiki/Neural_backpropagation

    Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).

  8. Here's Why American Cheese Can't Legally Be Called Cheese - AOL

    www.aol.com/lifestyle/heres-why-american-cheese...

    All cheese undergoes some degree of processing, but American cheese especially so. Experts explain whether or not American cheese is considered real cheese.

  9. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    However, it was not the backpropagation algorithm, and he did not have a general method for training multiple layers. In 1965, Alexey Grigorevich Ivakhnenko and Valentin Lapa published Group Method of Data Handling. It was one of the first deep learning methods, used to train an eight-layer neural net in 1971. [14] [15] [16]