Search results
Results from the WOW.Com Content Network
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.
For maximum likelihood estimation, the existence of a global maximum of the likelihood function is of the utmost importance. By the extreme value theorem, it suffices that the likelihood function is continuous on a compact parameter space for the maximum likelihood estimator to exist. [7]
For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. [8] In many applications, such M-estimators can be thought of as estimating characteristics of the population.
The EM method was modified to compute maximum a posteriori (MAP) estimates for Bayesian inference in the original paper by Dempster, Laird, and Rubin. Other methods exist to find maximum likelihood estimates, such as gradient descent, conjugate gradient, or variants of the Gauss–Newton algorithm. Unlike EM, such methods typically require the ...
In statistics, the restricted (or residual, or reduced) maximum likelihood (REML) approach is a particular form of maximum likelihood estimation that does not base estimates on a maximum likelihood fit of all the information, but instead uses a likelihood function calculated from a transformed set of data, so that nuisance parameters have no effect.
Maximum likelihood sequence estimation is formally the application of maximum likelihood to this problem. That is, the estimate of { x ( t )} is defined to be a sequence of values which maximize the functional
Scoring algorithm, also known as Fisher's scoring, [1] is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher. Sketch of derivation
Due to easy computability, method-of-moments estimates may be used as the first approximation to the solutions of the likelihood equations, and successive improved approximations may then be found by the Newton–Raphson method. In this way the method of moments can assist in finding maximum likelihood estimates.