enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Range minimum query - Wikipedia

    en.wikipedia.org/wiki/Range_minimum_query

    However, the array will store pre-computed range minimum queries not for every range [i, j], but only for ranges whose size is a power of two. There are O(log n) such queries for each start position i, so the size of the dynamic programming table B is O(n log n). The value of B[i, j] is the index of the minimum of the range A[i…i+2 j-1].

  3. Lexicographically minimal string rotation - Wikipedia

    en.wikipedia.org/wiki/Lexicographically_minimal...

    It was observed that if there are q equivalent lexicographically minimal rotations of a string of length n, then the string must consist of q equal substrings of length ⁠ = / ⁠. The algorithm requires only ⁠ + / ⁠ comparisons and constant space in the worst case. The algorithm is divided into two phases.

  4. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    It is at least the absolute value of the difference of the sizes of the two strings. It is at most the length of the longer string. It is zero if and only if the strings are equal. If the strings have the same size, the Hamming distance is an upper bound on the Levenshtein distance. The Hamming distance is the number of positions at which the ...

  5. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.

  6. Range query (computer science) - Wikipedia

    en.wikipedia.org/wiki/Range_query_(computer_science)

    Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query ⁡ (,) returns the sum of all values in the range [,].

  7. Damerau–Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Damerau–Levenshtein_distance

    Adding transpositions adds significant complexity. The difference between the two algorithms consists in that the optimal string alignment algorithm computes the number of edit operations needed to make the strings equal under the condition that no substring is edited more than once, whereas the second one presents no such restriction.

  8. Edit distance - Wikipedia

    en.wikipedia.org/wiki/Edit_distance

    Given two strings a and b on an alphabet Σ (e.g. the set of ASCII characters, the set of bytes [0..255], etc.), the edit distance d(a, b) is the minimum-weight series of edit operations that transforms a into b. One of the simplest sets of edit operations is that defined by Levenshtein in 1966: [2] Insertion of a single symbol.

  9. Wagner–Fischer algorithm - Wikipedia

    en.wikipedia.org/wiki/Wagner–Fischer_algorithm

    The Wagner–Fischer algorithm computes edit distance based on the observation that if we reserve a matrix to hold the edit distances between all prefixes of the first string and all prefixes of the second, then we can compute the values in the matrix by flood filling the matrix, and thus find the distance between the two full strings as the last value computed.