enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    Rank–nullity theorem. Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and. the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the ...

  3. Nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Nullity_theorem

    The nullity theorem is a mathematical theorem about the inverse of a partitioned matrix, which states that the nullity of a block in a matrix equals the nullity of the complementary block in its inverse matrix. Here, the nullity is the dimension of the kernel. The theorem was proven in an abstract setting by Gustafson (1984), and for matrices ...

  4. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The column space of an m × n matrix with components from is a linear subspace of the m -space . The dimension of the column space is called the rank of the matrix and is at most min (m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly.

  5. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    For example, in the MATLAB or GNU Octave function pinv, the tolerance is taken to be t = ε⋅max(m, n)⋅max(Σ), where ε is the machine epsilon. The computational cost of this method is dominated by the cost of computing the SVD, which is several times higher than matrixmatrix multiplication, even if a state-of-the art implementation ...

  6. Zero matrix - Wikipedia

    en.wikipedia.org/wiki/Zero_matrix

    In mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix all of whose entries are zero. It also serves as the additive identity of the additive group of matrices, and is denoted by the symbol or followed by subscripts corresponding to the dimension of the matrix as the context sees fit. [1][2][3] Some examples of ...

  7. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The nilpotency of N can be exploited when calculating f(A) where f is a complex analytic function. For example, in principle the Jordan form could give a closed-form expression for the exponential exp(A). The number of Jordan blocks corresponding to λ i of size at least j is dim ker(A − λ i I) j − dim ker(A − λ i I) j−1.

  8. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    In linear algebra, the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. [1][2][3] This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. [4] Rank is thus a measure of the "nondegenerateness ...

  9. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Bottom: The action of Σ, a scaling by the singular values σ1 horizontally and σ2 vertically. Right: The action of U, another rotation. In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix into a rotation, followed by a rescaling followed by another rotation.