enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear matrix inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_matrix_inequality

    In convex optimization, a linear matrix inequality (LMI) is an expression of the form. where. is a real vector, are symmetric matrices , is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone in the subspace of symmetric matrices . This linear matrix inequality specifies a convex ...

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope, which is a set defined as the ...

  4. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Linear inequality. In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality: [1] < less than. > greater than. ≤ less than or equal to. ≥ greater than or equal to. ≠ not equal to.

  5. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Fourier–Motzkin elimination. Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [1] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.

  6. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    A system of linear inequalities defines a polytope as a feasible region. The simplex algorithm begins at a starting vertex and moves along the edges of the polytope until it reaches the vertex of the optimal solution. Polyhedron of simplex algorithm in 3D. The simplex algorithm operates on linear programs in the canonical form.

  7. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    Farkas' lemma. In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas. [1] Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization ...

  8. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  9. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.