Search results
Results from the WOW.Com Content Network
In uniform scaling with a non-zero scale factor, all non-zero vectors retain their direction (as seen from the origin), or all have the direction reversed, depending on the sign of the scaling factor. In non-uniform scaling only the vectors that belong to an eigenspace will retain their direction. A vector that is the sum of two or more non ...
A quadratic form q is said to be isotropic if there is a non-zero vector v such that q(v) = 0; such a v is an isotropic vector or null vector. In complex geometry, a line through the origin in the direction of an isotropic vector is an isotropic line. Isotropic coordinates
These approximations of the macroscale model can all be refined in analogous microscale models. On the first approximation listed above—that birth and death rates are constant—the macroscale model of Figure 1 is exactly the mean of a large number of stochastic trials with the growth rate fluctuating randomly in each instance of time. [19]
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
A scale-free network is a network whose degree distribution follows a power law, at least asymptotically.That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as
Hyperuniformity is defined by the scaling of the variance of the number of points that are within a disk of radius R. For the ideal gas (left), this variance scales like the area of the disk. For a hyperuniform system (center), it scales slower than the area of the disk. [ 1 ]
An extension of metric multidimensional scaling, in which the target space is an arbitrary smooth non-Euclidean space. In cases where the dissimilarities are distances on a surface and the target space is another surface, GMDS allows finding the minimum-distortion embedding of one surface into another. [5]
Scaling of Navier–Stokes equation refers to the process of selecting the proper spatial scales – for a certain type of flow – to be used in the non-dimensionalization of the equation. Since the resulting equations need to be dimensionless, a suitable combination of parameters and constants of the equations and flow (domain ...